Determine which statements about the graph are true.
1)

A. The point $(8,4)$ shows that 8 batches of cookies require 4 cups of flour.
B. The point $(3,1.5)$ shows that 1.5 cups of flour will make 3 batches of cookies.
C. The point $(1,2)$ shows that 2 batches of cookies require 1 cups of flour.
D. The point $(1,0.5)$ shows that 0.5 cup of flour will make 1 batch of cookies.

1. \qquad
2. \qquad
3. \qquad
2)

A. The point $(2,0.5)$ shows that $\$ 2$ will buy you 0.5 pounds of meat.
B. The point $(1.75,7)$ shows that buying 1.75 pounds of meat will cost $\$ 7$.
C. The point $(0.75,3)$ shows that $\$ 3$ will buy you 0.75 pounds of meat.
D. The point $(6,1.5)$ shows that $\$ 6$ will buy you 1.5 pounds of meat.
3)

A. The point $(200,8)$ shows that you get 200 pieces of candy in 8 boxes.
B. The point $(50,2)$ shows that 2 boxes of candy contain 50 pieces of candy.
C. The point $(1,25)$ shows that you get 25 pieces of candy in 1 box.
D. The point $(7,175)$ shows that you get 175 pieces of candy in 7 boxes.

Determine which statements about the graph are true.
Answers
1)

A. The point $(8,4)$ shows that 8 batches of
3)

2)

cookies require 4 cups of flour.
B. The point $(3,1.5)$ shows that 1.5 cups of flour will make 3 batches of cookies.
C. The point $(1,2)$ shows that 2 batches of cookies require 1 cups of flour.
D. The point $(1,0.5)$ shows that 0.5 cup of flour will make 1 batch of cookies.
A. The point $(2,0.5)$ shows that $\$ 2$ will buy you 0.5 pounds of meat.
B. The point $(1.75,7)$ shows that buying 1.75 pounds of meat will cost $\$ 7$.
C. The point $(0.75,3)$ shows that $\$ 3$ will buy you 0.75 pounds of meat.
D. The point $(6,1.5)$ shows that $\$ 6$ will buy you 1.5 pounds of meat.
A. The point $(200,8)$ shows that you get 200 pieces of candy in 8 boxes.
B. The point $(50,2)$ shows that 2 boxes of candy contain 50 pieces of candy.
C. The point $(1,25)$ shows that you get 25 pieces of candy in 1 box.
D. The point $(7,175)$ shows that you get 175 pieces of candy in 7 boxes.

1. \qquad
2. \qquad
3. \qquad
